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Abstract. Some existence results for vector quasivariational inequalities with multifunctions
in Banach spaces are derived by employing the KKM-Fan theorem. In particular, we gener-
alize a result by Lin, Yang and Yao, and avoid monotonicity assumptions. We also consider
a new quasivariational inequality problem and propose notions of weak and strong equilib-
ria while applying the results to traffic network problems.
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1. Introduction and preliminaries

Vector variational inequalities were proposed by Giannessi (1980) and have
been intensively developed in the last two decades.

The existence of a solution of vector variational inequalities is proba-
bly most intensively studied. Among numerous techniques used in deriv-
ing existence results, the well-known KKM-Fan theorem is one of the
most helpful tools (see e.g., Hadjisavvas and Schaible, 1996, 1998; Ding
(1997); Lin et al., 1997; Konnov, 1998; Ansari, 2000; John, 2001; Diafari-
Rouhani et al., 2001; Fu and Wan, 2002; Khanh and Luu, 2004; Hai and
Khanh, in press). Besides, assumptions about some monotonicity proper-
ties are often inevitably imposed. The usual monotonicity was first used
(see e.g., Blum and Oetti, 1993). Then many authors assumed pseudo-
monotonicity (e.g., Yao, 1994; Lin et al., 1997; Diafari-Rouhani et al.,
2001; Khanh and Luu, 2004; Hai and Khanh, in press). More relaxed
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assumptions of quasimonotonicity type were proposed in Hadjisavvas and
Schaible (1996, 1998), John (2001) and Konnov, (1998).

In the present note we use the KKM-Fan theorem and an equivalent
fixed point theorem to get existence results for rather general vector quasi-
variational inequalities involving multifunctions. For a commonly studied
quasivariational inequality problem, we try to weaken assumptions to get
rid of (relaxed) monotonicity. We consider also a new type of quasivari-
ational inequalities. Extending the Wardrop equilibrium, we propose defini-
tions of weak equilibrium and strong equilibrium for traffic networks with
multivalued costs and apply our existence results to obtain the existence of
such equilibria.

For the sake of comparison let us stop in several lines to mention sev-
eral other kinds of results and techniques. Ricceri (1995) supplied a sur-
vey of existence results based on the closedness of certain level sets. Guo
and Yao (1994) used the so-called class (S)+ of mappings (introduced by
Browder (1970), which are demicontinuous or continuous on finite-dimen-
sional subspaces instead of the class of pseudomonotone and upper semi-
continuous (usc) mappings.

Yao (1994) assumed the mappings involved in the variational inequality
problem to be pseudomonotone and continuous on finite-dimentional sub-
spaces and reduced the problem to the finite-dimensional case so that the
classical Stampacchia theorem can be applied. Crouzeix (1997) used a gap
function technique to prove that the solution set is nonempty and com-
pact (in Rn) under the assumption that the mapping of variational inequal-
ities is monotone, usc and has convex compact values. Zhao et al. (1999)
considered variational inequalities with the constraint sets defined by con-
vex inequalities and affine equalities. They developed a concept of excep-
tional family (a variational inequality problem does not have exceptional
families means that some kind of coercivity is satisfied) and used the Ka-
rush–Kuhn–Tucker theorem to prove that the nonexistence of an excep-
tional family is a sufficient condition for the existence of a solution if the
mapping is continuous.

The problem under our consideration is as follows. Let X and Y be
real Banach spaces, A ⊂ X be a nonempty, closed and convex subset.
Let C:A

−→→ Y be a multifunction with values being closed and convex
cones, different from Y and with nonempty interiors. Let K:A

−→→ X be
a multifunction with nonempty convex values. Let T :A

−→→ L(X,Y ), where
L(X,Y ) stands for the space of all continuous linear mappings from X

to Y . Let f :A × A → Y be a mapping with f (x, x) ∈ C(x) ∩ −C(x), ∀x ∈
A. Assume that Y \−int C(.) is a weakly closed mapping, i.e., its graph is
closed in X×Y with the weak topologies of X and Y . We consider the fol-
lowing two vector quasivariational inequality problems of:
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(QVI) : Finding x̄ ∈A
⋂

cl K(x̄) such that, for each x ∈K(x̄), there is t̄ ∈
T (x̄) such that

(t̄ , x − x̄)+f (x, x̄)∈Y\−intC(x̄);
(SQVI): Finding x̄ ∈ A

⋂
cl K(x̄) such that, for each x ∈ K(x̄) and for

each t ∈T (x̄),

(t, x − x̄)+f (x, x̄)∈Y\−intC(x̄).

Here cl means the closure and (t, x) means the value of linear mapping
t ∈ L(X,Y ) at x ∈ X. Note that (QVI) was considered by many authors,
while (SQVI) has not been studied.

We recall first some definitions needed in the sequel. A multifunction
F :X

−→→ Y is said to be usc at x0 ∈ domF := {x ∈ X : F(x) �= ∅} if, for each
neighborhood U of F(x0), there is a neighborhood N of x0 such that
F(N)⊂U . F is called usc in A⊂X if it is usc at every x ∈A and is called
usc if it is usc at every x ∈domF . All other definitions for a point will be
extended to a set by this way. F is said to be lower semicontinuous (lsc)
at x0 ∈ domF if, for each open subset U satisfying U ∩ F(x0) �= ∅, there
exists a neighborhood N of x0 such that U ∩ F(x) �= ∅ for all x ∈ N . F is
said to be upper hemicontinuous, uhc for short, (lower hemicontinuous lhc
for short), at x0 if, for each x ∈ X, the multifunction α �→ F(αx + (1 − α)

x0) is usc (lsc, respectively) at 0+. A multifunction T :A
−→→ L(X,Y ) is called

generalized upper hemicontinuous, guhc for short, (generalized lower hemi-
continuous, glhc for short), at x0 ∈ A if, for each x ∈ A,α �→ (T (αx +
(1−α)x0), x −x0) is usc (lsc, respectively) at 0+.

Assume that C is a convex cone of Y . A mapping f :X → Y is called
C-convex in a convex subset A⊂X if, ∀x1 ∈A,∀x2 ∈A,∀γ ∈ [0,1],

(1−γ )f (x1)+γf (x2)−f ((1−γ )x1 +γ x2)∈C.

We need also the following notion of pseudomonotonicity. A pair (T , f )

of T :A
−→→ L(X,Y ) and f :A ×A → Y is said to be pseudomonotone in A

if, ∀x ∈A,∀y ∈A,

[∃s ∈T (x), (s, y −x)+f (y, x)∈Y\−intC(x)]

⇒[∀t ∈T (y), (t, y −x)+f (y, x)∈Y \−intC(x)].

(T , f ) is called weakly pseudomonotone if “∀t” in the above statement is
replaced by “∃t”.

A multifunction H of a subset A of a topological vector space X into X

is termed a KKM mapping in A if, for each finite subset {x1, . . . , xn} of A,
one has co{x1, . . . , xn}⊂

⋃n
i=1 H(xi), where co{·} stands for the convex hull.
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The main tool for proving our results is the following well-known KKM-
Fan theorem in Fan (1984).

THEOREM 1.1. Assume that X is a topological vector space, A⊂X is non-
empty and H :A

−→→ X is a KKM mapping with closed values. If there is a
subset X0 contained in a compact convex subset of A such that ∩x∈x0H(x) is
compact, then ∩x∈AH(x) �=∅.

Theorem 1.1 has many equivalent formulations in terms of fixed points.
The following result is a slightly weaker version (suitable for our use) of
Tarafdar’s theorem in Tarafdar (1987), which is equivalent to Theorem 1.1.

THEOREM 1.2. Let X be a Hausdorff topological vector space and A⊂X

be nonempty. Let φ:A
−→→ A have nonempty convex values. Assume that

(i) φ−1(y) is open in A for each y ∈A;
(ii) there exists a nonempty subset X0 contained in a compact convex subset

of A such that A\∪y∈X0φ
−1(y) is compact or empty.

Then, there is a fixed point x0 of φ in A, i.e., x0 ∈φ(x0).

2. Existence for (QVI)

In the sequel let E :={x ∈A :x ∈ clK(x)}.
The first result below is an extention of the main result in Lin et al. (1997).

THEOREM 2.1. Assume, for problem (QVI),

(i) T is guhc in A and has nonempty compact values;
(ii) (T , f ) is weakly pseudomonotone in A and, ∀x ∈A,f (., x) is C(x)-con-

vex in A;
(iii) ∀x∈A,∀y ∈A,∀xα

w→x,∃xβ (subnet), ∃u∈−C(x)+f (y, x), f (y, xβ)
w→u,

where
w→ means the weak convergence;

(iv) for all x ∈A,A∩K(x) is nonempty, K−1(x) is weakly open in A, clK(.)

is weakly closed; moreover, ∀x ∈E,∀y ∈K(x),∀γ ∈ (0,1], γy + (1−γ )x ∈
K(x);

(v) there is a nonempty weakly compact subset D of A and a subset X0

of a weakly compact convex subset of A such that ∀x ∈A\D,∃z∈X0 ∩
K(x), (T (z), z−x)+f (z, x)⊂−int C(x).

Then, (QVI) has solutions.

Proof. For x, y ∈A and i =1,2, set

P1(x) :={z∈A : (T (x), z−x)+f (z, x)⊂−intC(x)},
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P2(x) :={z∈A : (T (z), z−x)+f (z, x)⊂−intC(x)},

�i(x) :=
{

K(x)
⋂

Pi(x) if x ∈E,

A
⋂

K(x) if x ∈A\E,

Qi(y) :=A\�−1
i (y).

Since A
⋂

K(x) �= ∅ for all x ∈ A,
⋃

y∈A K−1(y) = A. Theorem 1.2 in turn
guarantees that K(.) has a fixed point in A (and hence E �=∅). Indeed, only
assumption (ii) of this theorem is to be checked. By (v),

A\D ⊂
⋃

x∈X0

K−1(x)⊂A.

Hence, A \⋃x∈X0
K−1(x) is contained in D and is then weakly compact.

Then, since clK(.) is weakly closed, so is E.
Next we calculate Qi(y), for i =1,2 and for y ∈A. We have

�−1
i (y)={x ∈A :y ∈�i(x)}

={x ∈E :y ∈K(x)
⋂

Pi(x)}
⋃

{x ∈A\E :y ∈K(x)}
=
[
E
⋂

K−1(y)
⋂

P −1
i (y)

]⋃[
(A\E)

⋂
K−1(y)

]

=
[(

E
⋂

P −1
i (y)

)⋃
(A\E)

]⋂
K−1(y)

=
[
(A\E)

⋃
P −1

i (y)
]⋂

K−1(y).

Therefore,

Qi(y)=
{
A\

[
(A\E)

⋃
P −1

i (y)
]}⋃[

A\K−1(y)
]

=
[
E
⋂(

A\P −1
i (y)

)]⋃[
A\K−1(y)

]
. (1)

Now we show that Q1(.) is a KKM mapping in A. Suppose to the con-
trary that there is a convex combination in A, x̂ =∑n

j=1 αjyj , such that x̂ �∈
⋃n

j=1 Q1(yj ), i.e., x̂ ∈�−1
1 (yj ) and then yj ∈�1(x̂) for all j =1, . . . , n. If x̂ ∈

E, then �1(x̂)=K(x̂)
⋂

P1(x̂). Hence, yj ∈P1(x̂), i.e.,

(T (x̂), yj − x̂)+f (yj , x̂)⊂−intC(x̂).

Therefore, ∀t ∈T (x̂),

0= (t, x̂ − x̂)=
n∑

j=1

αj [(t, yj − x̂)+f (yj , x̂)]−
n∑

j=1

αjf (yj , x̂)
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=
n∑

j=1

αj [(t, yj − x̂)+f (yj , x̂)]+


f




n∑

j=1

αjyj , x̂



−
n∑

j=1

αjf (yj , x̂)





−f (x̂, x̂)∈−intC(x̂)−C(x̂)−C(x̂)=−intC(x̂).

Consequently, C(x̂)=Y , a contradiction. For the remaining case x̂ ∈A\E, i.e.,
x̂ �∈ clK(x̂), one sees that, by the definition of �1, yj ∈ �1(x̂) = A

⋂
K(x̂).

Hence, x̂ =∑n
j=1 αjyj ∈ K(x̂), a contradiction again. Thus, Q1 is a KKM

mapping.
On the other hand, by the definition of Pi and by the weak pseudomo-

notonicity of (T , f ),A\P −1
1 (y)⊂A\P −1

2 (y). Hence, Q1(y)⊂Q2(y),∀y ∈A.

Thus, Q2 is also a KKM mapping in A.
To apply Theorem 1.1 we check the weak closedness of Q2(y) for each

y ∈A. Using (1) it remains to check the weak closedness of A\P −1
2 (y),∀y ∈

A. Assume that xα
w→x ∈A and xα ∈A\P −1

2 (y), i.e., ∃tα ∈T (y) such that

(tα, y −xα)+f (y, xα)∈Y \−intC(xα). (2)

By the compactness of T (y), there are t ∈ T (y) and a subnet tβ → t . One
has

(tβ, y −xβ)= (tβ − t, y −xβ)+ (t, y −xβ). (3)

Since t is also continuous, when X and Y are equipped with the weak
topologies, (t, y −xβ)

w→(t, y −x). On the other hand,

‖(tβ − t, y −xβ)‖�‖tβ − t‖‖y −xβ‖→0

as ‖y − xβ‖ is bounded. Therefore (3) implies that (tβ, y − xβ)
w→(t, y − x).

Taking (iii) into account, there is a subnet xγ of xβ and u∈−C(x)+f (y, x)

such that f (y, xγ )
w→u. Now the weak closedness of Y \ −int C(.) and (2)

together imply that

(t, y −x)+u∈Y \−intC(x).

Hence,

(t, y −x)+f (y, x)= (t, y −x)+u+f (y, x)−u

∈Y \−intC(x)+C(x)=Y \−intC(x),

which shows that x ∈A\P −1
2 (y) and then A\P −1

2 (y) is weakly closed. Thus,
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Q2(y) is weakly closed for all y ∈ A. Moreover, by (v), ∀x ∈ A\D,∃ z ∈
X0

⋂
K(x) such that z ∈ �2(x). Consequently, A\D ⊂ ⋃

z∈X0
�−1

2 (z) and
hence

D ⊃
⋂

z∈X0

A\�−1
2 (z)=

⋂

z∈X0

Q2(z).

With this, all the assumptions of Theorem 1.1 are satisfied and then there
exists x̄ of

⋂

y∈A

(A\�−1
2 (y))=A\

⋃

y∈A

�−1
2 (y). (4)

Finally, we show that x̄ is a solution of (QVI). By (4), �2(x̄) = ∅. Two
possibilities arise. If x̄ ∈ A\E, by (iv), �2(x̄) = A

⋂
K(x̄) �= ∅, a contra-

diction. Otherwise, i.e., x̄ ∈ E,∅ = �2(x̄) = K(x̄)
⋂

P2(x̄). So, for each y ∈
K(x̄), y /∈P2(x̄), i.e., ∃t̄ ∈T (y),

(t̄ , y − x̄)+f (y, x̄)⊂Y\−intC(x̄). (5)

Suppose x̄ is not a solution, i.e., ∃ȳ ∈K(x̄),∀s ∈T (x̄),

(s, ȳ − x̄)+f (ȳ, x̄)∈−intC(x̄).

This and the guhc of T imply, for all λ>0 small enough, that

(T (λȳ + (1−λ)x̄), ȳ − x̄)+f (ȳ, x̄)⊂−intC(x̄). (6)

On the other hand, by (5), (iv) and the C(x̄)-convexity of f (., x̄), one has

(t̄ , ȳ − x̄)+f (ȳ, x̄)

= 1
λ

[(t̄ , λȳ + (1−λ)x̄ − x̄)+f (λȳ + (1−λ)x̄, x̄)]

+1
λ

[λf (ȳ, x̄)+ (1−λ)f (x̄, x̄)−f (λȳ + (1−λ)x̄, x̄)]

−1−λ

λ
f (x̄, x̄)

∈Y \−intC(x̄)+C(x̄)+C(x̄)
⋂

(−C(x̄))

=Y \−intC(x̄)

contradicting (6). Thus, x̄ is a solution of (QVI).
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REMARK 2.1. In the special case, where A is weakly compact, f (x, y)≡0
and K(x)≡A, Theorem 2.1 collapses to Theorem 3.1 of Lin et al. (1997).
Hence, Theorem 2.1 contains among others all results mentioned in Lin et
al.(1997) as consequences of Theorem 3.1. Of course, in this case the coer-
civity condition (v) is omitted. If A is only closed and convex, a coercivity
assumption is inevitable. Other observations about relations between our
results and the recent ones in the literature are given in Remarks 2.2 and
2.3.

We can avoid the assumptions that T (x) is compact for all x (and also
weaken slightly (v) and strengthen (ii)) as follows.

THEOREM 2.2. Assume (iii), (iv) and replace (i), (ii) and (v) of Theorem
2.1, respectively, by

(i’) T is guhc in A;
(ii’) (T , f ) is pseudomonotone in A and, ∀x ∈A,f (., x) is C(x)-convex in A;
(v’) there is a nonempty weakly compact subset D of A and a subset X0

of a weakly compact convex subset of A such that ∀x ∈ A\D,∃z ∈
X0

⋂
K(x), ((T (z), z−x)+f (z, x))

⋂
(−intC(x)) �=∅.

Then, (QVI) has solutions.

Proof. We use Pi,�i and Qi, i =1,2, as in the proof of Theorem 2.1 and
define for all x ∈A and y ∈A,

P3(x) :={z∈A :∃t ∈T (z) : (t, z−x)+f (z, x)∈−intC(x)}.

�3(x) :=
{

K(x)
⋂

P3(x) if x ∈E,

A
⋂

K(x) if x ∈A\E,

Q3(y) :=A\�−1
3 (y).

Then, as before Q1 is a KKM mapping. By the pseudomonotonicity of
(T , f ),A\P −l

1 (y) ⊂ A\P −1
3 (y) and hence Q1(y) ⊂ Q3(y),∀y ∈ A. So, Q3 is

also a KKM mapping in A. Since Q3 is defined also by (1), we have to
show the weak closedness of A\P −1

3 (y),∀y ∈A. Assume that xα
w→x ∈A and

xα ∈A\P −1
3 (y), i.e. for all t ∈T (y) one has

(t, y −xα)+f (y, xα)∈Y \−intC(xα). (7)

Taking (iii) into account there are a subnet xβ and u∈−C(x)+f (y, x) such
that f (y, xβ)

w→u. By virtue of (7), of the continuity of t in the weak topol-
ogies and of the weak closedness of Y \−intC(.) one has

(t, y −x)+u∈Y \−intC(x).
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Therefore,

(t, y −x)+f (y, x)= (t, y −x)+u+f (y, x)−u

∈Y \−intC(x)+C(x)=Y \−intC(x),

which shows that A\P −1
3 (y) is weakly closed and so is Q3(y). Similarly as

for Q2, by (v’),
⋂

z∈X0
Q3(z) is weakly compact. Applying the KKM-Fan

theorem gives

x̄ ∈
⋂

y∈A

(A\�−1
3 (y))=A\

⋃

y∈A

�−1
3 (y).

Now the remaining part for indicating that x̄ is a solution of (QVI) is sim-
ilar to that of Theorem 2.1 with small modifications.

In the following, we remove monotonicity or even its relaxed kind as
assumed in Theorem 2.1 of (T , f ) by strengthening slightly the assumption
on T in compensation.

THEOREM 2.3. Impose the assumptions of Theorem 2.1 with the modifica-
tion that the weak pseudomonotonicity in (ii) is deleted and the guhc of T

in (i) is strengthened to the usc of T in the weak topology of X and norm
topology of L(X,Y ). Then, (QVI) still has solutions.

Proof. Observe that any x̄ ∈⋂y∈A Q1(y) is a solution of (QVI). To apply
the KKM-Fan theorem for Q1, it remains to check only the weak clo-
sedness of the values of Q1. For an arbitrary y ∈ A, let xα

w→x ∈ A,xα ∈
A\P −1

1 (y), i.e., there exists tα ∈T (xα) such that

(tα, y −xα)+f (y, xα)∈Y \−intC(xα).

The assumed generalized upper hemicontinuity of T implies that,
∀ε >0,∃N(x) (a weak neighborhood), T (N(x))⊂B(T (x), ε). We can regard
xα as being in N(x). Hence, there is t ′α ∈ T (x),‖tα − t ′α‖ < ε. As T (x) is
compact, there exist t ∈ T (x) and subnet t ′β → t . Consequently, ‖tβ − t‖ →
0. By a similar argument as in the proof of Theorem 2.1 one sees that
x ∈A\P −1

1 (y). Thus, Q1(y) is closed, ∀y ∈A. It remains to use the KKM-
Fan theorem to complete the proof.

It should be noted that the statements above are long and seemingly
complicated, but the assumptions are in fact weak and not hard to be
checked. We consider an example.
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EXAMPLE 2.1. Let X =Y =R,A= [0,1],C(x)≡R+, f (x, y)≡0,

K(x)=






{0} if x ∈ [0, 1
100),

[0, 1
5 ] if x ∈ ( 99

100 ,1],
[0, x

2 ) otherwise,

T (x)=
{

[0, x]∪{−1} if x =0 or x = 1
n
,

[0, x] otherwise.

We check the assumptions of Theorem 2.1. (iii) and (v) are trivially satisfied.
For (i), we show that T is guhc at arbitrary x0, i.e., ∀x ∈ A, ∀ε > 0,∀α > 0
small enough,

(T (x0 +α(x −x0)), x −x0)⊂B((T (x0), x −x0), ε). (8)

We check (8) first for the case where x0 =1/n, x �=1/n. We have

(T (x0 +α(x −x0)), x −x0)=
[

0,
1
n

+α

(

x − 1
n

)](

x − 1
n

)

,

(T (x0), x −x0)=
[

0,
1
n

(

x − 1
n

)]⋃{

−
(

x − 1
n

)}

.

So, (8) is fulfilled if

1
n

(

x − 1
n

)

+α

(

x − 1
n

)2

<
1
n

(

x − 1
n

)

+ ε,

i.e., α <ε(x − 1/n)−2. Next, for the case, where x0 = 0 and x ∈A arbitrary,
(8) holds if

[0, αx2]
⋃

{−x}⊆ (−ε, ε)
⋃

(−x − ε,−x + ε).

Hence (8) is satisfied if α <εx−2. In other cases (8) is clearly fulfilled.
Assumption (ii), i.e., T is weakly pseudomonotone at any x, is obvious

since we can take t =0∈T (y) for all y to have (t, y −x)≥0 (see the defini-
tion).

Now for the openness of K−1(x) in (iv), we have three cases. If
x =0,K−1(0)= [0,1/100)

⋃
(99/100,1]

⋃{y ∈ [0,1] :0∈ [0, y/2)}= [0,1]. If x ∈
(0,1/5],K−1(x)= (99/100,1]

⋃{y ∈ [0,1] : x ∈ [0, y/2)}= (99/100,1)
⋃

(2y,1].
Finally, for x ∈ (1/5,1],K−1(x)={y ∈ [0,1] :x ∈ [0, y/2)}= (2x,1]. So K−1(x)

is always open in A. Next for the closedness of cl K(.) it suffices to check
the usc, since A is compact. We have to consider only two points x =1/100
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and x = 99/100 and the consideration is direct. The last condition in (iv)
is clearly satisfied, since E ={0}. Applying Theorem 2.1, we see that (QVI)
has solutions for this case. Because any solution must be in E, we conclude
that the unique solution is x̄ =0.

REMARK 2.2. (a) In Ding (1997) a scalar variational-like inequality prob-
lem, i.e. the case, where Y =R,C(x)=R+,K(x)≡K and x − x̄ in the state-
ment of our (QVI) is replaced by η(x, x̄), where η:K × K → X is given,
is considered. His solution notion (also used in a number of other works)
is stronger than that of our (QVI) and weaker than that of our (SQVI).
Namely in the definition of solution, “for each x ∈K(x̄), there is t̄ ∈T (x̄)”
is replaced by “there is t̄ ∈ T (x̄) common for all x ∈ K(x̄)”. He does not
assume weak pseudomonotonicity but needs f (x, .) to be weakly continu-
ous (this is stricter than our assumption (iii)). For a solution of our (QVI)
to be a solution in the sense of Ding (1997), Lee and Kum (2000) proposed
to use the Kneser minimax theorem.

(b) It is well known that equilibrium problems (EP) are more gen-
eral than variational inequalities. However, the general type of variational
inequalities considered in Ding (1997) and in this note contains (EP) as a
special case, where T (x) ≡ {0}. So, it is interesting to compare these two
ways of the problem setting. Let us mention a single example. If in our
theorems T (x) ≡ {0} and K(x) ≡ K, i.e. our (QVI) becomes an (EP), our
results are different from Theorem 3.1, the main result of Chadli and Riahi
(2000). However, our assumption (iii) is weaker than (H1) and (H3) of this
Theorem 3.1 about semicontinuity and we do not need a pseudomonoto-
nicity like (H0).

(c) More general settings for (EP) in Lee and Kum (2000), Kum and Lee
(2002), Fu (2000) , Fu and Wan, (2002) and Hai and Khanh (2004), includ-
ing a mapping of three variables F(t, x, y) instead of f (x, y), reduce to our
(QVI) with K(x)≡K by taking

F(t, y, x)=−(t, y −x)−f (y, x). (9)

Some results of these references are somewhat similar to ours but differ-
ent. In Theorems 3.1 and 3.2, the main results of Kum and Lee (2002),
F(t, y, .) needs to be continuous, which is stronger than our assumptions.
By taking (9), the problem setting in Hai and Khanh (in press) completely
includes (QVI). However, the results are different. Our assumption that
(T ,f ) is (weakly) pseudomonotone helps to pass the consideration to a
Minty (QVI), while assumption (i) and (ii) of Theorem 3.1 of Hai and
Khanh (in press) are on another kind of pseudomonotonicity. In our (i)
and (iii), T is generalized usc in directions and f satisfies a condition
weaker than lsc. The corresponding assumption (iii) of Hai and Khanh (in
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press) is a kind of lsc (for T and f together), and then is stronger. Our
assumptions (v) or (v’) is a coercivity condition for the mentioned Minty
(QVI), not a “direct coercivity” as in Hai and Khanh (in press). However,
we can observe similar techniques in Hai and Khanh (in press) and this
note. They are similar to that of a number of works in the literature, using
the well-known KKM-Fan theorem.

3. Existence for (SQVI)

THEOREM 3.1. Let all the assumptions of Theorem 2.2 be satisfied with

(i’) replaced by
(i”) T is glhc in A.

Then, Problem (SQVI) has solutions.

Proof. As in the proof of Theorem 2.2, one obtains a point

x̄ ∈
⋂

y∈A

(A\�−1
3 (y))=A\

⋃

y∈A

�−1
3 (y).

Hence, �3(x̄) = ∅ and as before x̄ must be in E. Then, ∅ = �3(x̄) =
K(x̄)

⋂
P2(x̄). So, for each y ∈K(x̄), y /∈P3(x̄), i.e.,

(T (y), y − x̄)+f (y, x̄)⊂Y \−intC(x̄). (10)

For each y ∈K(x̄), define G(λ) := (T (λy + (I −λ)x̄), y − x̄). By (i”), G is lsc
at 0+, i.e., ∀g ∈G(0),∀λn →0+,∃gn ∈G(λn), gn →g. Setting yn :=λny + (1−
λn)x̄, one has tn ∈T (yn) such that gn = (tn, y − x̄). By (iv), yn ∈K(x̄). Then,
(10) implies that

(tn, yn − x̄)+f (yn, x̄)∈Y \−intC(x̄).

Therefore,

gn +f (y, x̄)

= 1
λn

[(tn, λny + (1−λn)x̄ − x̄)+f (y, x̄)]

= 1
λn

[(tn, yn − x̄)+f (yn, x̄)]+ 1
λn

[λnf (y, x̄)+ (1−λn)f (x̄, x̄)

−f (λny + (1−λn)x̄, x̄)]− 1−λn

λn

f (x̄, x̄)

∈Y \−intC(x̄)+C(x̄)+C(x̄)
⋂

(−C(x̄))

=Y \−intC(x̄).
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Letting n→∞, one obtains g +f (y, x̄)∈Y \−int C(x̄). This is true for all
y ∈K(x̄) and all g ∈G(0)= (T (x̄), y − x̄), i.e., x̄ is a solution of (SQVI).

4. Applications to Traffic Network Problems

Wardrop (1952) introduced a notion of equilibrium flow for transporta-
tion network problems. Based on this definition these trafic problems with
a single criterion for equilibrium, i.e. with a scalar cost, have been stud-
ied extensively in both theory and methodology view points (see discus-
sions and surveys e.g. in Florian, 1986; Nagurney, 1993). Since many cri-
teria (such as time delay, required toll. . . ) should be compromised in prac-
tical problems, Chen and Yen (1993) proposed an extension of the War-
drop notion of equilibrium to the vector case. See Yang and Goh (1997)
and Goh and Yang (1999) for remarkable developments in this direction.
In particular, the papers make it clear that a scalar traffic network prob-
lem is equivalent to variational inequality problem, but this equivalence is
no longer true for the two corresponding vector problems. Relations among
the solutions of these two problems and that of the corresponding vector
optimization problems are also discussed in some details. In Daniele et al.,
(1999), the scalar traffic model is extended to the case, where the data (i.e.
the flow capacity, and the demand) are time-dependent. It is proved that
the mentioned equivalence holds for this case. See also Giannessi (2000) for
various developments of traffic network considerations.

De Luca (1995) and Maugeri (1995) proposed to consider the costs as
multifunctions of the flows and the demands depending on the equilibrium
flow to make the traffic model more elastic and suitable for diverse prac-
tical situations. Developing this idea, Khanh and Luu (2004) extended the
Wardrop definition of equilibrium to weak equilibrium and strong equilib-
rium, suitable for this model of multivalued costs. Sufficient conditions for
the existence of weak and strong equilibria are established based on the
observation that the weak and strong solutions of the multivalued vector
quasivariational inequality problem are, respectively, weak and strong equi-
librium flows.

In this section, we illustrate applications of the results obtained in the
previous sections in two ways. First we show that applying Theorems 2.1
and 3.1 to the traffic problem considered in Khanh and Luu (2004) we
obtain again the results of that paper. Next we show that due to the fact
that the quasivariational inequality problem in this paper is more gen-
eral than that in Khanh and Luu (2004) we can apply it to consider in
more details the traffic problem with a particular tolerance in satisfying the
demands. Since our goal here is not related directly to whether the problem
is scalar or vector, for the sake of simplicity we consider the scalar case.
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Recall first the traffic network problem considered in Khanh and Luu
(2004). Let N be the set of nodes, L be that of links (or arcs), W :=
(W1, . . . ,Wl) be the set of origin-destination pairs (O/D pairs for short).
Assume that the pair Wj, j =1, . . . , l, is connected by a set Pj of paths (Pj

containing rj ≥ 1 paths). Set m := r1 +· · ·+ rl. Let F := (F1, . . . , Fm) be the
path flow vector. Let the cost vector T (F ) := (T1(F ), . . . , Tm(F )) be given
as a multifunction T :Rm

+
−→→ Rm

+ . Let 	s be the capacity of path Rs, s =
1, . . . ,m. Then the flows must satisfy the constraint

F ∈A :={F ∈Rm
+ : 0�Fs �	s, s =1, . . . ,m}. (11)

We propose the following generalization of the Wardrop equilibrium.

DEFINITION 4.1. (i) A path flow vector H is said to be a weak equilib-
rium flow vector if ∀Wj,∀Rq ∈Pj ,∀Rs ∈Pj ,∃t ∈T (H),

tq < ts ⇒Hq =	q or Hs =0,

where j =1, . . . , l and q, s ∈{1, . . . ,m} are among rj indeces correspond-
ing to Pj .

(ii) A path flow vector H is called a strong equilibrium flow vector if (i) is
satisfied with ∃t ∈T (H) being replaced by ∀t ∈T (H).

Following De Luca (1995) and Maugeri (1995), the demands ρj of the
O/D pairs Wj may depend on the equilibrium flow vector H . So we have
a mapping ρ:Rm

+ →Rl
+, which is assumed to be continuous. Set

φjs :=
{

1 if Rs ∈Pj ,

0 if Rs /∈Pj ,

φ ={ϕjs}, j =1, . . . , l, s =1, . . . ,m.

Let ε:Rm
+ → R+ be a continuous functional. Assume that there is a toler-

ance in demands such that the set of the feasible path flow vectors is

K(H) :={F ∈Rm
+ :φF ∈B(ρ(H), ε(H)),F ∈A},

where B(ρ(H), ε(H)) is the ball (in Rl) centered at ρ(H) with radius ε(H).
Then K(.) satisfied (iv) of Theorem 2.1 as shown in Khanh and Luu
(2004).

Observe that a feasible path flow vector H̄ is a weak equilibrium flow
vector if H̄ is a solution of (QV I ) problem: finding H̄ ∈ K(H̄ ) such that
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for each F ∈K(H̄ ), there is t̄ ∈T (H̄ ) such that

< t̄,F − H̄ >�0.

Repeating almost the same arguments as in Khanh and Luu (2004), instead
of applying Theorems 2.1 and 2.2 there, we can use Theorems 2.1 and 3.1
of this paper to get the following existence results.

COROLLARY 4.1. If T is guhc and pseudomonotone in A and has compact
values, then the traffic network has a weak equilibrium flow vector.

COROLLARY 4.2. If T is glhc and pseudomonotone in A, then the traffic
network has a strong equibrium flow vector.

REMARK 4.1. (i) The advantage of Theorems 2.1 and 3.1 here is that
they guarantee that E �= ∅, while applying the results of Khanh and Luu
(2004) one has to assume that 	s, ρ(.) and ε(.) are given so that E �= ∅,
which is not verifiable.

(ii) As mentioned at the beginning of this section, the classical scalar
traffic network problem (with single-valued costs and fixed demands) is
equivalent to the corresponding variational inequality problem. However,
for the above network problem we have only one implication: any weak or
strong solution of (QVI) is a weak or strong, respectively, equilibrium flow
vector. Now we establish the reverse implication for the following special
case.

Assume that the ball B(ρ, ε) in Rl (of the tolerance in the demands) has
the form {v ∈Rl: maxi=1,... ,l |vi −ρi |<ε}. Assume also that

M:= sup
H∈A

sup
t∈T (H)

sup
i=1,... ,m

|tp|<+∞.

PROPOSITION 4.3. If H̄ is a weak equilibrium flow vector, then H̄ is a
solution of the quasivariational inequality problem (QVI) with f (x, y) =
2Mlε(y). In fact H̄ is a solution of the more stronger problem of finding
H̄ ∈A∩ clK(H̄ ) such that there is t̄ ∈T (H̄ ) satisfying, for all F ∈K(H̄ ),

〈t̄ , F − H̄ 〉+2Mlε(H̄ )≥0. (12)

Proof. Assume that H̄ is a weak equilibrium flow. For each O/D pair Wj

set

Aj :={Rq ∈Pj : H̄q <	q},
Bj : ={Rs ∈Pj : H̄s >0}.
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Then, by the definition of weak equilibrium flows, t̄q � t̄s if Rq ∈Aj and
Rs ∈Bj . Take γj such that

inf
Rq∈Aj

{t̄q}�γj � sup
Rs∈Bj

{t̄s}.

We have to check (12) for arbitrary F ∈K(H̄ ). Let a pair Wj and a path
Rr ∈Wj be arbitrary. If t̄r <γj , then Rr /∈Aj , i.e. H̄r =	r , and hence

(t̄r −γj )(Fr − H̄r)≥0. (13)

If t̄r > γj , then Rr /∈Bj , i.e. H̄r = 0, and hence (13) holds. If t̄r = γj , (13)
clearly holds. Since (13) is satisfied for all Wj and all Rr ∈Wj one has

〈t̄ , F − H̄ 〉

=
l∑

j=1

∑

Rr∈Wj

t̄r (Fr − H̄r)

≥
l∑

j=1

γj

∑

Rr∈Wj

(Fr − H̄r)

≥
l∑

j=1

γj (ρj (H̄ )− ε(H̄ )− (ρj (H̄ )+ ε(H̄ )))

=−2ε(H̄ )

l∑

j=1

γj .

Therefore,

〈t̄ , F − H̄ 〉+2Mlε(H̄ )≥2ε(H̄ )



Ml −
l∑

j=1

γj



≥0.
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